A Tropical Semiring Multiple Matrix-Product Library on GPUs:
(not just) a step towards RNA-RNA Interaction Computations

HiICOMB 2020
19th IEEE International Workshop on High Performance Computational Biology

Brandon Gildemaster Prerana Ghalsasi
brandon.gildemaster@colostate.edu prerana.ghalsasi@colostate.edu

Sanjay Rajopadhye
sanjay.rajopadhye@colostate.edu

Colorado State University

Overview

° Background / motivation

* Algorithm

. Parallelization

° Memory optimizations

° GPU matrix-matrix multiplication library

° Modified matrix-matrix multiplication library

o Performance results

Next steps

%)) Colorado State University

Background / Motivation

° RNA-RNA Interaction (RRI) plays an important role in biological processes

- Gene expression

° Certain classes of RRI are well studied A

- Shown to play roles in various diseases

e
C
@
D)
@
>
A
@

C
Cc
(@]
()
(@)
>
()
(@]

C
>
@
A
()
>

Cc
>
0
()
(M)
>

- Other classes are not as well studied A
° Biological function can be interpreted from interaction structure
° Problem: Current tools to predict structure are slow

- O(N”4) space and O(N”6) time complexity

° Goal: Utilize massive parallelism of GPUs for acceleration while managing memory constraints

b) Colorado State University

Algorithms

Base pair maximization and free energy minimization
. O(N)"6 time and O(N)"4 space

. piRNA, BPPart, BPMax

. Much work on single strand folding, little on RRI

7) Colorado State University

5@

2202 J1 <1
(1) . .
Siip J2 <2

AI gorlth m iy jisinsgs = 1 iscore(iy, iz) i1 = j1 and is = jo

max(Fit1,5-1,i,,5. + score(iy, j1),
st lga =1 + score(iz, j2),
iy singa) otherwise

1ol g
max max (Fi, ky iz ke + Fley 1,1 k41,2
ki=iy ko=ia

J2—1 (2)
o) gnjz((Fil,jl,izkz + Slc2+1,j2)7
H;). . . =max| - *
1,J1512,52 j2 (2)
miax (Si;, + Fivgikat1.5),
2=iz

J1 (1)
m«lff(sf.,k‘ + Fryt1,1402.52)

1=

ﬁ Colorado State University

2] . .
S, J1<i

1 . .
SEI ,)j, J2 <12

AI gorlth m iy jisinsgs = 1 iscore(iy, iz) i1 = j1 and is = jo

max(Fit1,5-1,i,,5. + score(iy, j1),
st lga =1 + score(iz, j2),

iodiizga) otherwise

Ji—1l Jja
max max (Fll,k1~12~k2 + Fk1+1»J1,k2+1,12)
k1=i1 ko=is

L] 1 .
BPMax))iﬁjzi(Fil,j),iz.kz + Sl(ci)+1,j2)7
- Maximizes the score of weighted interactions Hi iz e = MaX

. . lg{éi(sg,)kg + Fi1>j171€2+1,j2)7
— Restricts certain structures

a1 a(1)
piax (S, b, + Fraviaa)
=1

° Fills up 4D dynamic programming table
- Trapezoidal grid of trapezoids
° Full recurrence equation is complex
- One O(N”6) term
- Several O(N”5) terms and constant lookups

° Double max reduction (boxed in red) is the most dominant O(N”6) term

- Most important optimization for performance

b) Colorado State University

Algorithm

e Skip bottom half of each matrix
- Subsequence [i,j] is the same as subsequence [j,i]
Top right corner also can be skipped
- Controlled by window size
- Limits range of intra-RNA interaction

Memory space

EREC DEEC] EEEC O0od
ONEE OEEE OmEE 000
O0EE OOmE e 0o
O000Om O0O0Om Oo0Om O000d

0000 EEEC EEmC] NEEC
0000 ONEN RN NN
0000 OdOEE OOmE OCmm
0000 OOOm 00O OOdm

0000 0000 EEEC] EEEC
d0000 0000 OnEE ClmE
d000 0000 OOmEE o
0000 0000 OO0 dOcCm

0000 0000 0000 REEC
0000 0000 0ooo OEEE
0000 0000 oo OOmm
0000 0000 0000 0o00m

Window size

@ Colorado State University

O_

Set of points evaluated

Parallelization

Ji—l g2
max Imax (Fil»kl,imkz + Fk1+11j1,7€2+1~,j2)7
k1=11 ko—io

J2—1 2
mE‘X (Fil,]'l,imkz + S](§72)+1,j2)’
(1) . . = max k2—22
©1,J1,%2,72 J2 (2)
IEHEX (Si%kg + Fi1111>k2+1,]'2)7
2=12
J1 (1)
miax (S; .+ Fry1,51i0.52)
. Imbalanced workload Fa=a s
° Naive parallelization: all points along a diagonal can be computed in parallel
- Poor locality

- No optimizations such as vectorization
° Key insight: The double max reduction can be cast as specialized

matrix-matrix multiplication

- Rearrange order of evaluation

- Apply memory transformations to the dynamic programming table
Depiction of naive parallelization: all terms
for the red cells are evaluated in parallel

b) Colorado State University

Double max reduction

EE BB B —
" = = }glaii Iglgxm(le’k"” ko Frot1i kot 152),5
“SEm “Smm " Som =y
maX Fl1»71,l2,k2 + Sk +1)7
.. 7((11)]1 inja = max ka=iz 2+1,j2
2J1y%2,, (2
= max(s@ ko T Fiv i ket 12)s
"S5 "EEm
niax S + Fhit1 i o
.= .= k1= 1(i1, kl 1+ «]177«2,]2)
EEE
HEE
EE

ﬁ Colorado State University

Double max reduction

EE BB B —
" = = }glaii Iglgxm(le’k"” ko Frot1i kot 152),5
“S8m “Som " Eom =y
maX Fl1»71,l2,k2 + Sk +1)7
.. 7((11)]1 inja = max ka=iz 2+1,j2
2J1y%2,, (2
= max(s@ ko T Fiv i ket 12)s
"S5 "EEm
niax S + Fhit1 i o
.= .= k1= 1(i1, kl 1+ «]177«2,]2)
EEE
HEE
EE

ﬁ Colorado State University

Double max reduction

EE BB B —
" = = }glaii Iglgxm(le’k"” ko Frot1i kot 152),5
“S8m “Som " Eom =y
maX Fl1»71,l2,k2 + Sk +1)7
.. 7((11)]1 inja = max ka=iz 2+1,j2
2J1y%2,, (2
= max(s@ ko T Fiv i ket 12)s
“SEn "DEm
niax S + Fhit1 i o
.= .= k1= 1(i1, kl 1+ «]177«2,]2)
EEE
HEE
EE

ﬁ Colorado State University

Double max reduction

EE BB B —
" = = }glaii Iglgxm(le’k"” ko Frot1i kot 152),5
“S8m “Som " Eom =y
maX Fl1»71,l2,k2 + Sk +1)7
.. 7((11)]1 inja = max ka=iz 2+1,j2
2J1y%2,, (2
= max(s@ ko T Fiv i ket 12)s
"S5 "EEm
niax S + Fhit1 i o
.= .= k1= 1(i1, kl 1+ «]177«2,]2)
EEE
HEE
EE

ﬁ Colorado State University

1 7

Double max reduction PR i (Fiy b ine + Py 12)

e @
: (Fh,jl,iz,kz + Sk2+1 j2)7
(1) _ ko=iz >

— max

i1,71,%2,72 7 2
gl:g’i(s’gg,)kﬁg + Fi1»117k2+1,j2)7
J 1
,gl‘:égi(sz(-l?kl + Frit1,1i2.52)
NEEE EEE EEN
OEE DNEE DESE
(]| (]| (]|
=]]
EEE I==. EEE
.== =] .== e Evaluation of blue cell is the maximum of the pairwise addition of the row and
= - column of red cells
..= .== . Interchanging j and k loops exploits vectorization on CPUs
m - Basically doing tropical matrix multiplication
.== ° Can be applied to all points in one matrix in parallel
A\
]
=I = - And all matrices along a diagonal to exploit coarse grain parallelism
B = MAX| aim
H+

() Colorado State University

Double max reduction

° Imbalanced workload

A C
EEE EEE BEN _ _
EEE DRl DRl Requires two max-plus operations

B B B Requires one max-plus operations

EEE EEE EEE C A B
“= B"E "B 50 mmm0 mEEC
OEEE @ OEEE , JEEE
EEE EED O0EE = O0OEN ULEE
EEE EEE OO0 OO00m OO0m
HE Bl
= =
EEE
EEE
B[E
=

@ Colorado State University

Double max reduction

° Pad each matrix with an extra row and column

- Shift cells in each matrix one row to the right

° Initialize white cells to max-plus semiring additive identity

° Avoids thread divergence

C A
EEN EEE
EE
[l

MAX(C[0,3] , -« + BJ[0,3]) = C[0,3]

*

B
HEE

@ Colorado State University

Thread divergence

Thread 1 in thread block 0: 2 iterations

° One program counter (PC) per thread warp
. PC loads instruction and all threads execute it Thread 3 in thread block 0: 1 iteration
. Divergence introduces overhead

- Threads must be masked (basically turned on/off)

if (threadIdx.x < 4) {

A;)
B; o
1} else { =
X; S
2 (O]
Y v
}
Z

» Time

Image from NVIDIA Volta architecture whitepaper

G ﬂ Colorado State U niversity

Matrix Multiplication

Visualizing iteration space

OEE EEE EEE k

OOm OEE DEE

Em BE O :

]] B — I
EEE BEEE
OEE DEE
EED on

5]] :

EEm J

(5[]}

53]

]

b) Colorado State University

Triangular or Trapezoidal Matrix Multiplication

L4 Goal: Get as close to the iteration space on the left . I
without introducing thread divergence I
° Thread divergence happens at the warp level in CUDA
- Diverging threads in a warp execute different J .
instructions J
° Skip computations at the thread-block level
° No standard library performs triangular-triangular matrix
multiplication

— Triangular-square 6x the amount of work!

%)) Colorado State University

Algorithm

Skip computations at thread block level

@9 Colorado State LImversnty

Step 1 Step 2 Step 3

Step 1

Step 2

Step 3

Modifications

Two memory transformations
NZ*M? — N*M*W?

102 GB — 10.5 GB for N =M =400 and W = 128

EEEC EEEC EEEC 0O0O0
Jf%S eEe eEs o
0000 0000 ERED EEEC
OO0Om OO0OE OOOE OOodad 0000 O0O00 OEEE OEEE (EEEECC EEEE
0000 EEECD ERED EEEC 0000 0000 COoEE OOnE
100 0fEs eme e e S
0000 EEEC0 EEEC EEEC
o000 0008 D00 DOJR el O Cige Cege mee OO mE e— CEES0
0000 0000 EEEC EEED
0000 0000 OEEE RN 0000 OOom OO0 OO0ON I o | CORECO
O000 0000 OO0 CC)EE EEEC EEEC EEEC EEEO I I |][
OO0O00 O0OO0 OOde OOdm EE== EE== EE== EE:: OO0O0000 OO0O00
EEEC
5EEE EEEE BEEE OO0 OO0OE OO00Om O00H

0 o o o
d (Ml S5

Il’Jl

@ Colorado State University

=i+ N-j, by

Iy]y =15 15715

Final algorithm

Step 1 Step 2 Step 3

The sub patch of C the thread block will
compute

Blue and red cells are loaded from global to
shared memory during each step

The computation performed in shared memory
during each step

Gf) Colorado State University

GPU Library

° Library call multiplies a column of matrices by another column of matrices in the max-plus semiring

EEEEE OENEED DEEEE
EEEEE CONN

OOEE
OO0
1000
gEaos EnEEE
o (T 1T
|
s]
. u
|
wa[| g
O0o0OE o
1000 o
[[[
ooooE
One call to the GPU library The full double reduction for blue/green matrices requires two library calls

@ Colorado State University

Max plus theoretical peak

L]

) Colorado State University

Can’t utilize FMA or tensor cores

Architecture | Memory Cores Clock speed Calculated peak
GTX 980 Maxwell 4GB 2048 1216 MHz 2490
GTX 1060 Pascal 6 GB 1280 1708 MHz 2184
Titan V Volta 12 GB 5120 1455 MHz 7450

Library performance

We developed a square matrix multiplication library which attains close to

machine peak
- Performs many unnecessary computations

A trapezoidal matrix multiplication library which does less operations
- but introduces some irregularities affecting performance

Graphs showing performance of a single library call on a column of 50
matrices

b) Colorado State University

Giga int ops / second

Giga int ops / second

Square matrix multiplication library

6000

5000

4000
3000 EGTX 1060
W GTX 980
MW Titan V
2000
1000
.ol

50x50 100x100 150x150 200x200 250x250 300x300 350x350 400x400

Matrix size
Trapezoidal matrix multiplication library
6000
5000
4000

3000 B GTX 1060

i

50x50 100x100 150x150 200x200 250x250 300x300 350x350 400x400

Matrix size

Library performance

° Graph is showing effective operations per second: counting only the
operations on cells that matter divided by runtime
° Previous graph was showing performance considering all operations
- This graph is more specific to BPMax

° When computing operations per second and ignoring useless computations
(effective ops/second) the trapezoidal library performance is higher
- Because it is doing less operations

Effective giga ops / second

00
[mm_]

-:I 100 '

1000 EREEE

1000

1000

Square vs. Triangular Matrix Multiplication Performance Columns of 50 Matrices

900

800

700

B Square matrix multiplication

600

B Triangular matrix multiplication

500
400

300

200

100+

0

$1200x200
©250x250

9]

b) Colorado State University

Input RNA Size vs. Runtime

10000
% 1000
T
=
Full BPMax performance S 100 |
O == CPU runtime
L =4= GPU runtime
) 10
E
5 1
o
. - issi i i 0.1
At the time of paper submission we completed the full implementation of 10 100 1000
BPMax on a GPU . .
)) o)) Size of RNA1 & RNA2 (# nucleotides)
° CPU experiments ran with the original BPMax implementation
- Naive CPU implementation / parallelization
— We plan to implement an optimized CPU version for a more fair GPU vs. CPU Speedup
comparison
1000

° Intel(R) Xeon(R) E-2278G CPU

- 5 GHz max clock speed
- 16 cores 100

° GPU results include data transfer time from CPU to GPU and back -@- speedup

Speedup

° BPMax attains ~.5 Giga ops /second currently 10

10 100 1000
Size of RNA1 & RNA2 (# nucleotides)

7) Colorado State University

Current / future work

Current library call attains ~10-11% of theoretical peak of GPU across 3 architectures
— Room for 10x improvement
Bottleneck: Memory mappings we implemented introduce thread divergence with memory loads

- We are exploring alternate strategies that reduce memory requirements without introducing irregularities
Optimized CPU implementation of BPMax that exploits vectorization / multithreading

7) Colorado State University

Current work - eliminating thread divergence with memory loads

° Problem: current memory map introduces thread divergence with memory loads

When loading values into shared memory, threads that load values
that were shifted out from memory transformations have thread
divergence

- But not on the computation level

1 2
if (value in physical memory)
load into shared memory
‘ else

pad with additive identity

) Colorado State University

Current work - possible solution 1

° Pad each matrix out to the next multiple of the thread block dimensions

- In this example the memory allocation is worse simply because the problem size is so small
- For larger RNA / window sizes it will save memory and eliminate divergence

Pad with additive identity

1 2

,q _

12x12 12x8 12x15

b) Colorado State University

Current work - possible solution 2

° Allocate memory based on the dimensions of the thread blocks
° This is the minimum memory we can allocate while avoiding thread divergence

— Since it is based off the thread block dimensions

100>
ok d\(“e“s ,
a9

Logical thread block mappings, size is . .
configurable (each color is a thread block) Physical memory allocation

X,
{ res
i K i
enSiOnS
Matrix dimensions based on -
RNA size

b) Colorado State University

