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Overview

° Background / motivation

*  Algorithm

. Parallelization

° Memory optimizations

° GPU matrix-matrix multiplication library

° Modified matrix-matrix multiplication library

o Performance results

Next steps
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Background / Motivation

° RNA-RNA Interaction (RRI) plays an important role in biological processes

- Gene expression

° Certain classes of RRI are well studied A

- Shown to play roles in various diseases
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- Other classes are not as well studied A
° Biological function can be interpreted from interaction structure
° Problem: Current tools to predict structure are slow

- O(N”4) space and O(N”6) time complexity

° Goal: Utilize massive parallelism of GPUs for acceleration while managing memory constraints
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Algorithms

Base pair maximization and free energy minimization
. O(N)"6 time and O(N)"4 space

. piRNA, BPPart, BPMax

. Much work on single strand folding, little on RRI
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° Fills up 4D dynamic programming table
- Trapezoidal grid of trapezoids
° Full recurrence equation is complex
- One O(N”6) term
- Several O(N”5) terms and constant lookups

° Double max reduction (boxed in red) is the most dominant O(N”6) term

- Most important optimization for performance
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Algorithm

e Skip bottom half of each matrix
- Subsequence [i,j] is the same as subsequence [j,i]
Top right corner also can be skipped
- Controlled by window size
- Limits range of intra-RNA interaction

Memory space
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Parallelization
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. Imbalanced workload Fa=a s
° Naive parallelization: all points along a diagonal can be computed in parallel
- Poor locality

- No optimizations such as vectorization
° Key insight: The double max reduction can be cast as specialized

matrix-matrix multiplication

- Rearrange order of evaluation

- Apply memory transformations to the dynamic programming table
Depiction of naive parallelization: all terms
for the red cells are evaluated in parallel
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Double max reduction
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Double max reduction
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Double max reduction
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Double max reduction

° Imbalanced workload
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Double max reduction

° Pad each matrix with an extra row and column

- Shift cells in each matrix one row to the right

° Initialize white cells to max-plus semiring additive identity

° Avoids thread divergence
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Thread divergence

Thread 1 in thread block 0: 2 iterations

° One program counter (PC) per thread warp
. PC loads instruction and all threads execute it Thread 3 in thread block 0: 1 iteration
. Divergence introduces overhead

- Threads must be masked (basically turned on/off)

if (threadIdx.x < 4) {

A; )
B; o
1} else { =
X; S
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» Time

Image from NVIDIA Volta architecture whitepaper
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Matrix Multiplication

Visualizing iteration space
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Triangular or Trapezoidal Matrix Multiplication

L4 Goal: Get as close to the iteration space on the left . I
without introducing thread divergence I
° Thread divergence happens at the warp level in CUDA
- Diverging threads in a warp execute different J .
instructions J
° Skip computations at the thread-block level
° No standard library performs triangular-triangular matrix
multiplication

—  Triangular-square 6x the amount of work!
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Algorithm

Skip computations at thread block level
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Step 1 Step 2 Step 3

Step 1

Step 2

Step 3




Modifications

Two memory transformations
NZ*M? — N*M*W?

102 GB — 10.5 GB for N =M =400 and W = 128
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Final algorithm

Step 1 Step 2 Step 3

The sub patch of C the thread block will
compute

Blue and red cells are loaded from global to
shared memory during each step

The computation performed in shared memory
during each step
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GPU Library

° Library call multiplies a column of matrices by another column of matrices in the max-plus semiring
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One call to the GPU library The full double reduction for blue/green matrices requires two library calls

@ Colorado State University



Max plus theoretical peak

L]
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Can’t utilize FMA or tensor cores

Architecture | Memory Cores Clock speed Calculated peak
GTX 980 Maxwell 4GB 2048 1216 MHz 2490
GTX 1060 Pascal 6 GB 1280 1708 MHz 2184
Titan V Volta 12 GB 5120 1455 MHz 7450




Library performance

We developed a square matrix multiplication library which attains close to

machine peak
- Performs many unnecessary computations

A trapezoidal matrix multiplication library which does less operations
- but introduces some irregularities affecting performance

Graphs showing performance of a single library call on a column of 50
matrices
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Square matrix multiplication library
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Library performance

° Graph is showing effective operations per second: counting only the
operations on cells that matter divided by runtime
° Previous graph was showing performance considering all operations
- This graph is more specific to BPMax

° When computing operations per second and ignoring useless computations
(effective ops/second) the trapezoidal library performance is higher
- Because it is doing less operations

Effective giga ops / second
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Input RNA Size vs. Runtime
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At the time of paper submission we completed the full implementation of 10 100 1000
BPMax on a GPU . .
) ) o ) ) Size of RNA1 & RNA2 (# nucleotides)
° CPU experiments ran with the original BPMax implementation
- Naive CPU implementation / parallelization
—  We plan to implement an optimized CPU version for a more fair GPU vs. CPU Speedup
comparison
1000

° Intel(R) Xeon(R) E-2278G CPU

- 5 GHz max clock speed
- 16 cores 100

° GPU results include data transfer time from CPU to GPU and back -@- speedup

Speedup

° BPMax attains ~.5 Giga ops /second currently 10

10 100 1000
Size of RNA1 & RNA2 (# nucleotides)
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Current / future work

Current library call attains ~10-11% of theoretical peak of GPU across 3 architectures
— Room for 10x improvement
Bottleneck: Memory mappings we implemented introduce thread divergence with memory loads

- We are exploring alternate strategies that reduce memory requirements without introducing irregularities
Optimized CPU implementation of BPMax that exploits vectorization / multithreading
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Current work - eliminating thread divergence with memory loads

° Problem: current memory map introduces thread divergence with memory loads

When loading values into shared memory, threads that load values
that were shifted out from memory transformations have thread
divergence

- But not on the computation level

1 2
if (value in physical memory)
load into shared memory
‘ else

pad with additive identity
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Current work - possible solution 1

° Pad each matrix out to the next multiple of the thread block dimensions

- In this example the memory allocation is worse simply because the problem size is so small
- For larger RNA / window sizes it will save memory and eliminate divergence

Pad with additive identity

1 2

,q _

12x12 12x8 12x15
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Current work - possible solution 2

° Allocate memory based on the dimensions of the thread blocks
° This is the minimum memory we can allocate while avoiding thread divergence

— Since it is based off the thread block dimensions

100>
ok d\(“e“s ,
a9

Logical thread block mappings, size is . .
configurable (each color is a thread block) Physical memory allocation

X,
{ res
i K i
enSiOnS
Matrix dimensions based on -
RNA size
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