
Accelerating the BPMax Algorithm for RNA-RNA
Interaction

Chiranjeb Mondal
Department of Computer Science

Colorado State University
Fort Collins, CO, USA

chiranjeb.mondal@colostate.edu

Sanjay Rajopadhye
Department of Computer Science

Colorado State University
Fort Collins, CO, USA

sanjay.rajopadhye@colostate.edu

Abstract—RNA-RNA interactions (RRI) play an important role
in various biological processes such as gene transcription, and
are known to play a critical role in diseases such as cancer and
Alzheimer’s, necessitating efficient computational tools. To date,
RRI programs like BPMax were developed and optimized by
hand, and this is prone to human error, and costly to develop and
maintain. Its high complexity (Θ(N3M3) in time and Θ(N2M2)
in space) make it both essential and a challenge to parallelize
it. In this paper, we present a parallelization of BPMax on
a single shared memory CPU platform. From a mathematical
specification of the dynamic programming algorithm, we generate
highly optimized code that achieves over 100× speedup over the
baseline program employing a standard “diagonal-by-diagonal”
execution order. We achieve 76 GFLOPS, which is about a fifth
of our platform’s peak theoretical single-precision performance
for max-plus computation. The main kernel in the algorithm
whose complexity is Θ(N3M3) attains 117 GFPLOS. We do
this with a polyhedral code generation tool, ALPHAZ, that takes
user-specified mapping directives and automatically generates
optimized C code that enhances parallelism and locality. ALPHAZ
allows the user to explore various schedules, memory-maps, and
parallelization approaches, as well as tiling of the most dominant
part of the computation.

Index Terms—RRI, BPMax, polyhedral model, tiling

I. INTRODUCTION

Ribonucleic acid (RNA) is the origin of life. It plays

an essential role in the coding, decoding, regulation, and

expression of genes. RNA is a single strand formed by a

sequence of four different types of nucleotides – Adenine

(A), Uracil (U), Guanine (G), and Cytosine (C), which form a

repeating structure. Different nucleotides may form bonds of

varying strength. A single RNA strand folds into itself. Also,

two different RNA strands can interact with each other, re-

sulting in the secondary structure, which can provide valuable

information about a biological function.

Researchers have long been studying these interactions

and proposed different models. In 1978, Nussinov presented

a model [1] that predicts secondary structure from single

RNA folding. RNA-RNA interactions have been moved to the

spotlight in biology since the mid-1990s with significant RNA

interference discovery. Chitsaz et al. [2] developed piRNA -

one of the most comprehensive thermodynamic models for

RRI. It has an Θ(N4M2 + N2M4) time and Θ(N4 + M4)
space complexity, for sequences of length M and N . It uses 96

dynamic tables. However, running this compute and memory

intensive program is extremely challenging. It takes days

and months to get experimental results. So, Ebrahimpour-

Boroojeny et al. [3] retreated from the slow comprehensive

model and developed the BPPart for base-pair partition and

BPMax for base-pair maximization. They use a simplified

energy model and consider only base pair counting. Both of

them have similar asymptotic time and space complexity of

Θ(M3N3) and Θ(M2N2). BPPart uses 11 tables, and BPMax

uses a single one. Nevertheless, the original implementation

of even BPMax suffers from poor performance as the input

size grows.

Ebrahimpour-Boroojeny et al. conclude that BPMax [3]

captures a significant portion of the thermodynamic informa-

tion. The Pearson and Spearman’s rank correlation between

piRNA and BPMax is 0.904 at −180°C and 0.836 at 37°C
highlighting its importance. BPMax and other RRI algorithms

such as piRNA [2], IRIS [4], RIP [5] follow similar recurrence

patterns. So, besides the practical usefulness of BPMax, the

learning and insights gleaned from this optimization approach

can be applied to the other RRI interaction algorithms with

similar recurrence patterns.

Performance optimization requires exploiting parallelism

and locality at multiple levels. It is a difficult task and often

leads to hand-crafted code. Manual optimization is neither

easily portable (e.g., to different platforms where different

kinds of optimization are needed) nor easily maintainable

(e.g., changing the optimization strategy may require changes

to many parts of the code). This challenge grows as the

complexity of the program increases. It is highly desirable that

the highly optimized programs get generated from a simple

correct program together with a set of performance tuning

hints or directives.

Fortunately, RRI algorithms fit the requirements of the poly-
hedral model [6]–[10] - a mathematical formalism that allows

for just such program transformations. The polyhedral compi-

lation has been the subject of intense research for 35 years, and

yet, even a state-of-the-art polyhedral tool like PLUTO [11],

[12] does not yield satisfactory performance [13]. Many of the

performance optimization strategies need some careful thought

by an expert. This gap can be bridged by a tool that allows

semi-automatic transformation like Chill [14]. At CSU, we are

228

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-3577-2/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPSW52791.2021.00042

developing and working with a similar tool, ALPHAZ [15], that

operates at a higher level of abstraction.

The paper makes the following contributions:

• This is the first time a complex RRI program like BPMax

has been optimized using ALPHAZ in its entirety. Previous

attempts were limited to a micro-kernel only. It is also the

first attempt to optimize BPMax on the CPU.

• We generate highly optimized code for BPMax using poly-

hedral transformations that achieves over 100× speedup over

the original program shown in Figure 1. The most compute-

intensive part of the BPMax achieves a 170× speedup over

the original implementation, a 1.5× - 2× improvement over

a similar kernel optimized previously.

• The compilation scripts and optimized version of the BPMax

program are available in GitHub public repository [16].

(a) Speedup over base program (b) Single-precision performance

Fig. 1: Summary of the optimization results

The paper proceeds as follows. We first set up the context

and background of our work to highlight the BPMax algo-

rithm, discuss the polyhedral model’s role, and application

of ALPHAZ . Then, we discuss multiple phases of the op-

timization process, the rationale behind different schedules,

processor allocations, and memory mappings. Finally, we go

over our performance results and conclude the paper with

challenges and future directions.

II. RELATED WORK

There was no previous example of significant success of

RRI optimization using polyhedral compilation to the best of

our knowledge. Palkowski et al. [17] have used the polyhedral

model to optimize Nussinov’s algorithm [1]. However, it is

related to single RNA strand folding only.

Varadrajan [13], [18] applied semi-automatic transforma-

tion using ALPHAZ for a simplified surrogate mini-app that

mimicked the dependence pattern to focus only on the most

compute-intensive portion of the original piRNA. The original

shared-memory OpenMP programs related to BPMax, BPPart,

and piRNA try to achieve maximum parallelization without

auto-vectorization and suffer very poor locality. She exploited

locality using both coarse and fine-grain parallelism and

achieved around 100× speedup.

Glidemaster [19] achieved significant speedup on a win-

dowed version of the BPMax on GPU. However, only up to

a limited number of nucleotide sequences or a window of

nucleotide sequences can be processed on GPU due to memory

constraints. Also, the cost of moving data out of the GPU

memory negatively impacts the overall performance. So, it is

crucial to speedup the algorithm on the CPU to avoid these

constraints. It can also further open up the possibility of a

higher degree of parallelism over multiple machines.

III. BACKGROUND

This section highlights the BPMax algorithm, summarizes

the polyhedral model, and then describes the code-generation

technique using ALPHAZ .

A. BPMAX ALGORITHM

BPMax uses weighted base-pair counting for base-pair max-

imization. It considers both intermolecular and intramolecular

Fig. 2: The four cases defining table F

Fi1,j1,i2,j2 = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
(2)
i2,j2

j1 ≤ i1

S
(1)
i1,j1

j2 ≤ i2

iscore(i1, i2) i1 = j1 and i2 = j2

max[Fi1+1,j1−1,i2,j2 + score(i1, j1),

Fi1,j1,i2+1,j2−1 + score(i2, j2),

Hi1,j1,i2,j2] otherwise
(1)

Hi1,j1,i2,j2 = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(1)(i1, j1) + S(2)(i2, j2),

Di1,j1,i2,j2

j2−1
max
k2=i2

S(2)(i2, k2) + Fi1,j1,k2+1,j2

j2−1
max
k2=i2

Fi1,j1,i2,k2 + S(2)(k2 + 1, j2)

j1−1
max
k1=i1

S(1)(i1, k1) + Fk1+1,j1,i2,j2

j1−1
max
k1=i1

Fi1,k1,i2,j2 + S(1)(k1 + 1, j1)

(2)

Di1,j1,i2,j2 =
j1−1
max
k1=i1

j2−1
max
k2=i2

Fi1,k1,i2,k2
+ Fk1+1,j1,k2+1,j2

(3)

229

base pairings. It does not allow pseudo-knots or crossings.

Mathematically, it produces a four-dimensional triangular table

- F -table (a triangular collection of triangles) based on two

input sequences. Figure 2 shows the main cases for the F -

table using Eddy-Rivas diagram. Equation 1, Equation 2, and

Equation 3 show the complete recurrence equation of BPMax.

Equation 3 highlighted in the blue color represents the double

max-plus operation. It is the most compute-intensive portion

of the algorithm. We use the same colors to highlight the

dependence pattern in section IV.

B. Polyhedral Model

The Polyhedral model [6]–[10] is a mathematical frame-

work for automatic optimization and parallelization of affine

programs. A polyhedron is the intersection of finitely many

half-spaces. It can be bounded (polytope) or unbounded. Static

control parts like variables, iteration space (loop nests), and

dependencies can be represented using polyhedra.

1 f o r (i n t i =0 ; i <7; i ++) {
2 sum [i] = 0 ;
3 f o r (i n t j =0 ; j<=i ; j ++)
4 sum [i] += a r r a y [j] ;
5 }

Listing 1: Prefix sum

Let us consider the prefix sum code highlighted in Listing 1

that computes the prefix-sum of an array of size 7. The

iteration space for this computation can be represented using

the intersection of the finite half-spaces or set of inequalities

such as j ≤ i, i ≤ 6 and j = 0 . The points in the

iteration spaces are marked with the dots represented by the

polyhedron with vertices - (0, 0), (0, 6), and (6, 0). The data

Fig. 3: Polyhedral iteration space for prefix-sum

space is usually one or more dimensions less than the iteration

space. As a result, the data access functions are many-to-

one mappings from iteration to data space. However, they are

affine, leading to the model’s clean closure properties under

program transformation.

Going back to the original equation, a concise way to

look at this computation would be to view it as an equation

sum[i] =
i∑

j=0

array[j]. The idea behind a polyhedral tool like

ALPHAZ is exactly the reverse. It allows users to express one

or more system of affine recurrence equations as a program,

transform them using the polyhedral transformations that re-

duce the complexity of the program, use a better processor

and memory allocation and then produce code for a language

of interest.

C. ALPHAZ

ALPHA is a strongly typed functional language that works

on a system of affine recurrence equations defined over

polyhedral domains. Maurus [20] proposed this equational

programming language as part of his doctoral dissertation.

Subsequently, it has been extended to include subsystems and

reductions [21]–[25]. Feautrier [8] showed that a polyhedral

segment of code shown in Listing 1 can be translated to an

ALPHA program. ALPHA is richer, mathematically cleaner, and

more natural, especially, but not exclusively due to reductions.

ALPHAZ is the tool that allows program transformations and

user-directed compilation of ALPHA programs. It provides a

general framework for analysis, transformation, and code gen-

eration in polyhedral equational model. ALPHAZ is similar to

an earlier tool - MMALPHA , which targets field-programmable

gate array based hardware design [26]. On the other hand,

ALPHAZ targets code generation for multiprocessor shared-

memory programs and focuses on programs with reduction

operations.

Every ALPHA program has two pieces – system definition

and compilation script. System definition of an ALPHA pro-

gram allows users to express input and output of the program

using polyhedral domains. It also allows a programmer to

express the computation in terms of equations. The program

containing the system definition is called alphabets. The sec-

ond piece is the compilation script that contains commands

to parse the input specification, transform the program based

on the user input and finally generate the code. Algorithm 1

highlights the alphabets program for matrix multiplication. Al-

gorithm 2 presents a compiling script for matrix multiplication.

Algorithm 1 Matrix Multiplication in Alphabets

1: affine MM {N,K,M | (M,N,K) > 0}
2: input
3: float A {i, j | 0 ≤ i < M && 0 ≤ j < K} ;

4: float B {i, j | 0 ≤ i < K && 0 ≤ j < N} ;

5: output
6: float C {i, j | 0 ≤ i < M && 0 ≤ j < N};
7: local
8: //local variables

9: output
10: C[i, j] = reduce(+, [k], A[i, k] * B[k, j]);

1) Program Parsing: The first step is to read the alphabets

program, which decomposes the equations into abstract syntax

tree notation internally and sets up the stage for various

program transformations.

230

2) Program Transformation: All transformations in

ALPHAZ are semantic preserving. However, it is the

responsibility of the user to ensure the transformations

are valid. Normalize is the most basic transformation. It

normalizes expression into normal form as per definition

and makes the program easier to read and understand.

NormalizeReduction transforms unnormalized form to

normalize form. A normal form of a reduction transforms

the reduce-expression to be a direct child of an equation.

setSpaceTimeMap allows the user to specify schedule and

processor allocation to specify the order in which one or more

processors visit the iteration space. A system with multiple

variables requires the dimension of all the spacetime maps to

be equal. NormalizeReduction generates additional variables

associated with the reductions. Specifying the schedule for

such variable requires two different schedules to be provided

– the first one specifies the order in which the iteration

space will be visited. The other specifies the time at which

Algorithm 2 Matrix Multiplication Command Script

1: // Step− 1 : Parse Alphabet
2: prog=ReadAlphabets(”MM.ab”);

3: system = “MM”;

4: outDir=”./src”;

5:

6: // Step− 2 : Perform polyhedral transformation
7: Normalize(prog);

8: setSpaceTimeMap(prog, system, “C”,

9: ”(i, j, k �→ i, k, j)”,
10: “(i, j �→ i,−1, j)”);
11: setParallel(prog, system, “”, ”0”);

12:

13: // Step− 3 : Generate code
14: generateWriteC(prog, system, outDir);

15: generateScheduleC(prog, system, outDir);

the initialization should occur before starting the reduction.

It also has a dependency on the schedule. setMemoryMap
- Memory map is a mapping between iteration points in

the domain to the memory location. By default, ALPHAZ
uses identity function as a memory map for each variable

and bounding box of the polyhedral representation of the

variable for storage. It allows multiple variables with different

dimensions to share the same memory map based on affine

function. setMemorySpace is similar to memory map. Except

that multiple variables with the same dimension can share

memory space. setParallel allows the user to specify one or

more dimensions of the schedule to be executed in parallel

by different threads. Users can also specify predicate as an

ordering dimension to define the parallel loop dimension.

Tiling transformation allows the user to chop the iteration

space to improve data locality and adjust parallelization

granularity.
3) Code Generation: This set of commands produce target

code (e.g., c) based on the program transformation. ALPHAZ
has various code generation options like – generateWriteC

which is sequential in nature and useful to check the cor-

rectness of the program, schedule code generation – gener-
ateScheduleC. Sequential code generation hardly requires any

1 # d e f i n e S1 (i , j , i 2) C(i , i 2) = 0 . 0
2 # d e f i n e S0 (i0 , i1 , i 2) C(i0 , i 2) = (C(i0 , i 2)) + ((A(i0 , i 1))

* (B(i1 , i 2)))
3 {
4 i n t c1 , c2 , c3 ;
5 #pragma omp p a r a l l e l f o r p r i v a t e (c2 , c3)
6 f o r (c1 =0; c1 <= M−1; c1 +=1){
7 f o r (c3 =0; c3 <= N−1; c3 +=1){
8 S1 ((c1) , (−1) , (c3)) ;
9 }

10 f o r (c2 =0; c2 <= K−1; c2 +=1){
11 f o r (c3 =0; c3 <= N−1; c3 +=1){
12 S0 ((c1) , (c2) , (c3)) ;
13 }
14 }
15 }
16 }

Listing 2: Generated code - Matrix multiplication

program transformation. However, efficient schedule code

generation depends on the choice of various transformations,

mainly the target mapping-related transformations. The tiling

transformation is not applied upfront rather invoked as part of

the post processing phase of the schedule code generation.

IV. METHODS

We have staged our optimization process into three distinct

phases. The following subsections describe these phases.

A. Phase-1:

This phase’s primary goal is to express the BPMax equation

in ALPHAZ , perform the first-level optimization on the most

compute-intensive portion of the task and get a baseline

estimation.

a) Multi-dimensional Affine Schedule for Double Max-
plus Operation: We simplify the BPMax computation based

on the following recurrence equation as the very first step.

Fi1,j1,i2,j2 =
j1−1
max
k1=i1

j2−1
max
k2=i2

Fi1,k1,i2,k2
+ Fk1+1,j1,k2+1,j2 (4)

Let us call this double max-plus computation R0. Our goal

is to find out the optimum multi-dimensional affine schedule

[9], [10] for this equation. A schedule is only valid if it

preserves the program semantic, which requires dependency

analysis. We observe that each inner triangle of F -table is

dependent on the triangles to the west and south. E.g., triangle

C is dependent on all the Ax triangles towards the west and

Bx triangles towards the south illustrated in Figure 4. There

is no dependency from the triangle within. So, each inner

triangle can be filled diagonally or bottom-up and then left

to right. The first two dimensions of our multi-dimensional

schedule can be either (j1−i1, i1) or (M−i1, j1) or (−i1, j1)
for F -table and R0. There are many ways to formulate the

next dimension for R0. One such choice would be to use

k1. Figure 5 highlights the accumulation sequence based on

this choice. It has the effect of performing multiple max-plus

operations on a series of matrices (i1, k1) and (k1 + 1, j1).
It requires the third dimension of the F -table to be j1,

231

meaning we must finish computing all the max-plus operations

for the current triangle before updating it. The inner three

dimensions of the R0 can be in any order since they do not

have any dependencies. Thus, it can be (j2 − i2, i2, k2) or

Fig. 4: Double max-plus dependency

(i2, j2, k2) or (M−i2, j2, k2) or (i2, j2, k2) or (j2−i2, k2, i2)
or (−i2, k2, j2) etc. However, auto-vectorization is prohibited

if k2 is the innermost loop iteration. Other choices can be

Fig. 5: Double max-plus accumulation sequence

viewed as loop permutations that allow auto-vectorization.

For updating the final F -table entries, we can copy the

data in any order. The original BPMax implementation uses

i1, j1, i2, j2 �→ j1 − i1, j2 − i2, i1, i2, k1, k2 schedule for

double max-plus computation. Table I shows various multi-

dimensional affine schedules similar to Varadrajan’s. We pick

similar schedules to establish the baseline since her kernel

was based on multiply-add and ours is max-plus. Also, we

use single-precision storage to reduce the memory footprint

of BPMax.

b) Machine Peak Analysis and Micro-benchmark: Next,

we develop the roofline model for the target machine. Our

schedule tries to exploit auto-vectorization that loads one

scalar and vector of 8 elements from L1 to compute 8 max-plus

operations, and the data access pattern is Y = max(a+X,Y).
We create a micro-benchmark to estimate the attainable L1

bandwidth for such access pattern. It allocates two large

one-dimensional arrays for each thread, initializes them with

random numbers, and then invokes the kernel (Algorithm 3)

Algorithm 3 Max-plus streaming benchmark

1: for iteration ← 0,MAX ITERATION do
2: for index ← 0, CHUNK SIZE do
3: Y [index] = max(alpha+X[index], Y [index])
4: end for
5: end for

that computes the max-plus operation on the array. The micro-

benchmark data is presented in the result section.

TABLE I: DOUBLE MAX-PLUS SCHEDULE

Variable Schedule
F (i1, j1, i2, j2 �→ j1 − i1, i1, j1, i2, j2, j2)

a R0 (i1, j1, i2, j2, k1, k2 �→ j1 − i1, i1, k1, i2, k2, j2),
(i1, j1, i2, j2 �→ j1 − i1, i1, i1 − 1, i2, i2 − 1, j2)

F (i1, j1, i2, j2 �→ −i1, j1, j1,−i2, j2, j2)
b R0 (i1, j1, i2, j2, k1, k2 �→ −i1, j1, k1,−i2, k2, j2) ,

(i1, j1, i2, j2 �→ −i1, j1, i1 − 1,−i2, i2 − 1, j2)
F (i1, j1, i2, j2 �→ j1 − i1, i1, j1, i2, j2, j2)

c R0 (i1, j1, i2, j2, k1, k2 �→ j1 − i1, i1, k1, i2, k2, j2) ,
(i1, j1, i2, j2 �→ j1 − i1, i1, i1 − 1, i2, i2 − 1, j2)

aFine-grain schedule(diagonal), parallel dimension 3
bFine-grain schedule(bottom-up), parallel dimension 3
cCoarse-grain schedule, parallel dimension 1

c) Insights from Phase-I: This phase highlights the possi-

bility of further improvements of R0 beyond loop permutation.

Double max-plus performance attains just above 20% of our

theoretical max-plus machine peak. We notice a significant

collapse in performance when the input sequences are longer.

B. Phase-II

We have two objectives in this phase. First, find a complete

schedule for BPMax that enables automatic vectorization for

all the variables and estimate the other reduction term’s

overhead. Second, explore optimization opportunities for the

double max-plus operation.

a) Multi-Dimensional Affine Schedule for BPMax: Fig-

ure 6 shows the complete BPMax dependencies for a point.

The point colored in red depends on all the other colored

points. BPMax has a total of five reductions. There are four

additional reductions R1 (green), R2 (orange), R3 (purple), R4

(yellow) beside R0 (blue). So, there are new dependencies in

addition to the similar dependencies highlighted in the double

max-plus computation. R1 and R2 have internal dependencies,

but the other two have external dependencies. One common

theme across various schedules is that S(1) and S(2) can be

scheduled before scheduling any other variables. Also, order

of filling up the inner triangle does not change with the

introduction of the other terms. Thus, the first two dimensions

of our multi-dimensional schedule can be either (j1−i1, i1) or

(M−i1, j1) or (−i1, j1) for F -table, R0, R1, R2, R3, R4. R3

232

and R4 is over k1 like R0. So, the third dimension can be the

same for all of them. Next, the inner three dimensions of the

R0 can also be the same as discussed earlier. R3 and R4 can

use (i2, j2). However, we introduce additional terms to make

the schedule dimension equal for all the variables. F -table,

R1, and R2 must wait until k1 reaches j1 like double max-

plus. Thus, their third schedule dimension becomes j1. Final

Fig. 6: BPMax dependency overview

F -table entries require intra-triangular dependencies to be

evaluated which are similar to inter-triangular dependencies.

So, it can be filled up diagonally or bottom-up and left to right.

Thus, the inner three dimensions of the schedule for R1 and

TABLE II: BPMAX FINE-GRAIN SCHEDULE

Variable Schedulea

S(1), S(2) (i1, j1 �→ 0, 0, 0, 0, j1 − i1, i1, 0, 0)
F (i1, j1, i2, j2 �→ 1,−i1, j1, j1,−i2, 0, j2, 0)

R1, R2 (i1, j1, i2, j2, k2 �→ 1,−i1, j1, j1,−i2, 0, k2, j2),
(i1, j1, i2, j2 �→ 1,−i1, j1, j1,−i2, 0, i2 − 1, j2)

R0 (i1, j1, i2, j2, k1, k2 �→ 1,−i1, j1, k1,−1,−i2, k2, j2),
(i1, j1, i2, j2 �→ 1,−i1, j1, i1 − 1,−1,−i2, i2 − 1, j2)

R3, R4 (i1, j1, i2, j2, k1 �→ 1,−i1, j1, k1,−1,−i2, i2, j2),
(i1, j1, i2, j2 �→ 1,−i1, j1, i1 − 1,−1,−i2, i2, j2)

aParallel dimension 5

TABLE III: BPMAX COARSE-GRAIN SCHEDULE

Variable Schedulea

S(1), S(2) (i1, j1 �→ 0, j1 − i1, i1, 0, 0, 0, 0)
F (i1, j1, i2, j2 �→ 1, j1 − i1, i1, j1,−i2, j2, j2

R1, R2 (i1, j1, i2, j2, k2 �→ 1, j1 − i1, i1, j1,−i2, k2, j2) ,
(i1, j1, i2, j2 �→ 1, j1 − i1, i1, j1,−i2, i2 − 1, j2)

R0 (i1, j1, i2, j2, k1, k2 �→ 1, j1 − i1, i1, k1, i2, k2, j2),
(i1, j1, i2, j2 �→ 1, j1 − i1, i1, i1 − 1, i2, i2 − 1, j2)

R3, R4 (i1, j1, i2, j2, k1 �→ 1, j1 − i1, i1, k1, i2, i2, j2),
(i1, j1, i2, j2 �→ 1, j1 − i1, i1, i1 − 1, i2, i2, j2)

aParallel Dimension 2

R2 can be (j2 − i2, i2, k2) or (N − i2, j2, k2) or (−i2, j2, k2)
or (j2 − i2, k2, j2) or (N − i2, k2, j2) or (−i2, k2, j2) etc.

We carefully chose the schedule for R1 and R2 since the

innermost k2 prevents automatic vectorization. We ensure

that F -table gets updated when k2 reaches j2. Table II and

III shows various multi-dimensional affine schedules which

provide better results than the base schedule.

b) Parallelization Approach: We take two different types

of parallelization approach in this phase - coarse and fine-

grain. For coarse-grain parallelization, threads work on distinct

inner triangles simultaneously. It is valid for R0, R1, R2, R3,

and R4. On the other hand, threads work on individual rows of

an inner triangle simultaneously for fine-grain parallelization.

It is only valid for R0, R3, and R4.

c) Memory Optimization: Memory-overhead of our

ALPHAZ generated code is M2 × N2. However, we only

need one-fourth of that memory. Even though it seems ineffi-

cient, the unused elements are never moved between memory

hierarchies. Reduction variables also take up memory space

by default, which is wasteful. In this phase, coarse-grain

parallelization still requires P (number of threads) instances

of a 2 − D array for each reduction variables to be active

in memory except R0. R0 shares memory with F . Fine-

Fig. 7: BPMax phase-II memory map

grain requires only a 2−D array for each of these variables

illustrated in Figure 7.

d) Tiling R0: The fine-grain parallelism for the R0

assigns one or more rows to each thread. Processing each row

needs to access one complete inner triangle below that row

before moving to the next. It motivates us to tile computations

Fig. 8: A matrix instance of max-plus operation

of one matrix instance of max-plus operation. It is matrix

multiplication like computation, except only a fraction of work

is being done here, and the access pattern is imbalanced. We

tile three inner dimensions with k2 loop still in the middle and

j2 loop inside. So, this chops (i2, k2, j2) iteration space, and

we parallelize the outer i2 dimension.

e) Insights from Phase-II: Loop permutation and au-

tomatic vectorization provide a significant speedup for the

entire BPMax program. However, the program suffers from

imbalanced parallelization. The tiled version of the R0 attains

33% of our theoretical max-plus machine peak.

233

C. Phase-III

In this phase, we handle the load imbalance between threads

and partially (R0, R3, R4) apply tiling to BPMax.

a) Parallelization Approach: Earlier, we have observed

that the program quickly becomes DRAM-bound for the

coarse-grain schedule since each thread computes an inner tri-

angle. But, it allows us to parallelize R1 and R2. On the other

hand, R0, R3, and R4 can be computed using the fine-grain

schedule, which reduces data movement between DRAM and

LLCs. However, R1 and R2 are not easy to parallelize. These

TABLE IV: BPMAX HYBRID SCHEDULE

Variable Schedulea

S(1), S(2) (i1, j1 �→ 0, 0, 0, j1 − i1, i1, 0, 0, 0)
F (i1, j1, i2, j2 �→ 1, j1 − i1,M, 0, i1,−i2, j2, 0

R1, R2 (i1, j1, i2, j2, k2 �→ 1, j1 − i1,M, 0, i1,−i2, k2, j2) ,
(i1, j1, i2, j2 �→ 1, j1 − i1,M, 0, i1,−i2, i2 − 1, j2)

R0 (i1, j1, i2, j2, k1, k2 �→ 1, j1 − i1, i1, k1, i2, k2, j2, 0),
(i1, j1, i2, j2 �→ 0, j1 − i1, i1, 0, i2, 0, j2, 0)

R3, R4 (i1, j1, i2, j2, k1 �→ 1, j1 − i1, i1, k1, i2, i2, j2, 0),
(i1, j1, i2, j2 �→ 0, j1 − i1, i1, 0, i2, 0, j2, 0)

aParallel Dimension 4

are optimum string parenthesization (OSP)-like computations

that require further transformation like middle serialization. If

we use the fine-grain parallelism without such transformation,

only one thread stays active, leading to lower CPU resource

utilization. We take advantage of the best of both worlds. We

use the fine-grain parallelism for R0, R3, R4 and the coarse-

grain parallelism for F -table, R1, R2. We call this hybrid

schedule shown in Table IV. It improves CPU utilization

and limits the data movement between DRAM and LLCs.

However, there are some limitations discussed in the result

section.

b) Tiling Integration and Subsystem Scheduling:
ALPHAZ produces inferior code when the tiling is applied

to a subset of reduction operations. It is due to the insertion

TABLE V: BPMAX HYBRID SCHEDULE WITH TILING

Variable Schedule
c (i1, j1 �→ M, i1, j1, 0)

a R0 (i1, j1, k1, k2 �→ k1, i1, k2, j1),
(i1, j1 �→ −1, i1, 0, j1)

R3, R4 (i1, j1, k1 �→ k1, i1, i1, j1),
(i1, j1 �→ −1, i1, 0, j1)

S(1), S(2) (i1, j1 �→ 0, 0, j1 − i1, i1, 0, 0, 0)
d (i1, j1 �→ 1, j1 − i1, i1, j1 − 4, 0, 0, 0)

b F (i1, j1, i2, j2 �→ 1, j1 − i1,M, i1,−i2, j2, 0)
R1, R2 (i1, j1, i2, j2, k2 �→ 1, j1 − i1,M, i1,−i2, k2, j2) ,

(i1, j1, i2, j2 �→ 1, j1 − i1,M, i1,−i2, i2 − 1, j2)

a - Subsystem schedule(parallel dimension 1)
b - Root system schedule(parallel dimension 3)
c - Subsystem output
d - Subsystem call

of additional schedule dimensions needed to isolate the tiling

band. So, we use ALPHA subsystem, which partitions BPMax

computation into two systems. The subsystem produces an

inner triangle using R0, R3, R4 and the primary system

produces R1 and R2 along with final F -table output and

consolidates the results from the subsystem. It allows us

to modularize the program and apply tiling transformation

on R0, R3, and R4 efficiently. The subsystem gets called

for each instance of an inner F -table update. Finally, use
equation construct integrates these two systems. We invoke the

subsystem call for each instance of the iteration space defined

by the schedule’s first two dimensions. Now, this requires

us to specify the schedule for the subsystem invocation.

Both systems are integrated manually. We perform minimal

preprocessing since our code generator can not produce tiled

code for the subsystem automatically. Two lines of source code

changes are made to achieve this. Table V summarizes the

complete schedule for the two systems.

c) Memory Optimization: We further optimize memory

utilization in this phase. R0, R3 and R4 are always computed

before final F -table update. So, they share the memory with

F -table. Also, only one row of an inner triangle is required

Fig. 9: BPMax phase-III memory map

for R1 and R2 to keep up with the F -table update. This has

been highlighted in Figure 9. We also optimize redundant data

copies during subsystem call using setMemorySpaceForUseE-
quationOptimization transformation.

d) Performance Tuning: To find an optimum tile shape,

we start with cubic tiles and then adjust one or more dimen-

sions to find a better tile shape that works moderately well

across various inputs. However, we notice 10% performance

differences between the best and generic tile sizes. The OMP

Fig. 10: Memory mapping schemes

dynamic-schedule works better than the static and guided-

schedule due to an imbalanced workload. Next, we perform

some manual memory optimization. The schedule initializes

memory for each reduction body. Still, when one variable

234

shares memory space with multiple variables, memory ini-

tialization becomes redundant, and the current code generator

does not optimize it. We comment out these macros, which

attempt duplicate initializations to eliminate redundancies. We

have tried two different memory transformations for the inner

triangle highlighted in Figure 10 - 1 : (i2, j2 �→ i2, j2) and 2

: (i2, j2 �→ i2, j2 − i2). Option-1 always performs better.

V. RESULTS

We use Xeon E5-1650v4 to present the results of our

optimization approach. Xeon E5-1650v4 has six cores where

each core has 32 KB 8-way set associative L1 and 256 KB 8

way-set associative cache. They share a 15 MB 20-way set-

associative cache.

A. Machine Peak Overview
Intel’s micro-architecture specification indicates that the

sustained L1 and L2 data cache bandwidth are 93 bytes

and 25 bytes/cycle, respectively, whereas L3 bandwidth and

DRAM bandwidth are 14 bytes/cycle and 76.8 GB/second,

Fig. 11: Xeon E5 1650v4 roofline based on micro-architecture

respectively. Based on this data, we have come up with the

roofline model shown in Figure 11. The theoretical max-plus

machine peak is about 346 GFLOPS for single-precision. We

will implicitly use GFLOPS to indicate the single-precision

performance for the rest of the section. BPMax performs 2-

Fig. 12: Micro-benchmark for Y = max(a+X,Y)

arithmetic operations for 3-single-precision memory opera-

tions. So, its arithmetic intensity is 2
(3×4) or 1

6 (second data

points on each series shown in Figure 11). Based on the

roofline model, we expect to achieve around 329 GFLOPS

based on L1 bandwidth. Our micro-benchmark data (Fig-

ure 12) shows that we achieve up to 120 GFLOPS with 6
threads and 240 GFLOPS with 12 threads.

B. Performance Analysis of Double Max-plus Computation

In this section, we go over the results of our optimization

approach for double max-plus computation. Figure 13 and

Figure 14 show the performance and speedup comparison of

double max-plus between different schedules using 6 threads.

We see that the coarse-grain parallelization performs very

poorly since it generates a lot of DRAM traffic and makes

the program slower. There is a minor difference between com-

puting the inner triangles of F -table diagonally vs. bottom-up

and left to right highlighted in orange and blue. In both cases,

all the threads work on one inner triangle before moving to

the next. Our tiling approach improves locality and maintains

automatic vectorization. It enables us to get close to the 97%
of our micro-benchmark target. We attain 117 GFLOPS with

the tiling transformation. Tile dimensions of (32×4×N) and

(64 × 16 × N) are used for presenting the performance and

speedup comparison. (32× 4×N) is restricted for sequence

length up to 2048.

We achieve around 178× improvement over the base imple-

mentation taken from the BPMax program. It is a sequential

improvement of 40 − 200% with 6 threads over Varadrajan’s

fine-grain schedule. However, her results show that hyper-

threading helped improve performance by over 10% in some

cases. We see minimal (3 − 5%) improvement with hyper-

threading over six threads shown in Figure 18. We have done

experiments with different tile sizes (i2 × k2 × j2) and found

that the cubic tiles perform poorly. We observe the best result

when j2 is not tiled due to the streaming effect.

C. BPMax Performance Improvement

Figure 15 and 16 show the performance improvements

and speedup of different versions of the BPMax program

using 6 threads. We use the original BPMax program as the

reference since no better CPU-version of the BPMax program

is available. The coarse and fine-grain version of the program

performs the worst, highlighted in light red and blue. As seen

in the previous section, the coarse-grain schedule severely

impacts double max-plus computation, affecting overall per-

formance. Fine-grain parallelism works better for R0, R3, R4,

but we cannot parallelize the R1, and R2 computations. The

hybrid parallelization approach highlighted in green performs

better than the coarse and fine-grain schedule. The tiled version

of the hybrid schedule highlighted in dark blue performs best.

It achieves 100× speedup for longer sequence lengths with 6
threads. The improvement for the tiled version mainly comes

from the optimization of R0, R3, R4. The tiled version of

the program reaches around 76 GFLOPS for moderate-size

sequences. It is almost 60% lower than the best double max-

plus version of the same sequence. Our analysis shows that R3

and R4 are almost free since those get computed along with

the R0. The other two Θ(M2N3) computations - R1 and R2

severely affect the overall performance. It is the effect of our

schedule choice. Each thread is responsible for producing the

final version of one inner triangle of F -table along with the

R1 and R2. Both of these computations require most of the

elements of one inner triangle of F -table and the S(2)-table to

235

Fig. 13: Double max-plus performance comparison

Fig. 14: Double max-plus speedup comparison

Fig. 15: BPMax performance comparison

Fig. 16: BPMax speedup comparison

Fig. 17: Effect of hyper-threading on tiled double max-plus

performance

Fig. 18: Effect of tiling parameters (i2 × k2 × j2) on double

max-plus performance (sequence length - 16 x 2500)

236

compute one row for the worst case. So, the total amount of

data required to process a row reaches about Θ(N2), which is

16 MB for an inner sequence of length 2048. This issue gets

amplified when we attempt hyper-threading (beyond 6 threads

for E5-1650v4).

Besides Xeon E5-1650v4, we have verified the scalability

of our optimized program on Intel Xeon E-2278G, which has

eight cores and runs almost at the same speed as E5-1650v4.

The optimized BPMax performs the same or better on E-

2278G compare to E5-1650v4, reaching close to one-fourth of

the theoretical single-precision machine peak. Figure 1 shows

an overview of the performance and speedup comparison on

Xeon E-2278G and Xeon E5-1650v4.

D. Code Generation Metric

Table VI shows the line of code (LOC) generated by

ALPHAZ for different BPMax program versions. We see an

increase in LOC when the program is optimized. Also, the

table highlights the complexities (based on LOC) between the

double max-plus computation and the BPMax program.

TABLE VI: AUTO-GENERATED CODE STATISTICS

Implementation LOC a b
BPMax base 140 140 NA

Double max-plus(coarse/fine) 150 None 3
BPMax coarse/fine/ hybrid 1200 None 30
BPMax hybrid with tiled 1400 <5 7

a - Hand written code
b - Macro replacement/Macro comment out

VI. CONCLUSION

This work demonstrates the optimization process of a

complete RRI program using polyhedral transformations. Our

result shows that the tiling improves the performance of the

most dominant part of the computation. However, the inner

reductions are still inefficient, which limits the overall per-

formance improvement. Also, the double max-plus operation

remains bandwidth-bound even after tiling transformation.

This indicates that an additional level of tiling at the register

level is required to make the program compute-bound and

improve performance. We also plan to apply tiling on R1 and

R2 and distribute the computation over a cluster using MPI.

All these transformations remain a challenge for ALPHAZ ,

and we hope to overcome them in the future.

REFERENCES

[1] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman, “Algorithms
for loop matchings,” SIAM Journal on Applied Mathematics, vol. 35,
no. 1, pp. 68–82, jul 1978.

[2] H. Chitsaz, R. Salari, S. C. Sahinalp, and R. Backofen, “A partition
function algorithm for interacting nucleic acid strands,” Bioinformatics,
vol. 25, no. 12, pp. i365–i373, may 2009.

[3] A. Ebrahimpour-Boroojeny, S. Rajopadhye, and H. Chitsaz, “Bppart and
bpmax: Rna-rna interaction partition function and structure prediction
for the base pair counting model,” apr 2019.

[4] D. D. Pervouchine, “Iris: intermolecular rna interaction search.” Genome
informatics. International Conference on Genome Informatics, vol. 15
2, pp. 92–101, 2004.

[5] F. W. D. Huang, J. Qin, C. M. Reidys, and P. F. Stadler, “Partition
function and base pairing probabilities for RNA–RNA interaction pre-
diction,” Bioinformatics, vol. 25, no. 20, pp. 2646–2654, aug 2009.

[6] S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto, “On syn-
thesizing systolic arrays from recurrence equations with linear depen-
dencies,” in Proceedings, Sixth Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer Verlag,
LNCS 241, December 1986, pp. 488–503.

[7] P. Quinton and V. Van Dongen, “The mapping of linear recurrence
equations on regular arrays,” Journal of VLSI Signal Processing, vol. 1,
no. 2, pp. 95–113, 1989.

[8] P. Feautrier, “Dataflow analysis of array and scalar references,” Interna-
tional Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53, Feb
1991.

[9] ——, “Some efficient solutions to the affine scheduling problem. Part I.
one-dimensional time,” International Journal of Parallel Programming,
vol. 21, no. 5, pp. 313–347, 1992.

[10] ——, “Some efficient solutions to the affine scheduling problem. Part II.
multidimensional time,” International Journal of Parallel Programming,
vol. 21, no. 6, pp. 389–420, 1992.

[11] U. Bondhugula, J. Ramanujam, and P. Sadayappan, “Pluto: A practical
and fully automatic polyhedral program optimization system,” 2015.

[12] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation - PLDI '08. ACM Press, 2008.

[13] S. Varadarajan, “Polyhedral optimizations of RNA-RNA interaction
computations,” Master’s thesis, Colorado State University, 2016.

[14] C. Chen, J. Chame, and M. Hall, “Chill: A framework for composing
high-level loop transformations,” Tech. Rep., 2008.

[15] T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “AlphaZ:
A system for design space exploration in the polyhedral model,” in
Proceedings of the 25th International Workshop on Languages and
Compilers for Parallel Computing, September 2012.

[16] C. Mondal and S. Rajopadhye, “Bpmax acceleration on cpu,”
https://github.com/chiranjeb/BPMaxCPU, 2020.

[17] M. Palkowski and W. Bielecki, “Tiling nussinov’s RNA folding loop
nest with a space-time approach,” BMC Bioinformatics, vol. 20, no. 1,
apr 2019.

[18] S. Varadarajan, “A case study on RNA-RNA interaction application
implementation using AlphaZ,” in Proceedings of the 4th ACM Inter-
national Workshop on Real World Domain Specific Languages. ACM,
feb 2019.

[19] B. Gildemaster, P. Ghalsasi, and S. Rajopadhye, “A tropical semiring
multiple matrix-product library on GPUs: (not just) a step towards RNA-
RNA interaction computations,” in 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, may
2020.

[20] C. Mauras, “Alpha : un langage equationnel pour la conception et la pro-
grammation d’architectures paralleles synchrones,” Ph.D. dissertation,
Rennes 1, 1989.

[21] H. Le Verge, “Un environnement de transformations de program-
mmes pour la synthèse d’architectures régulières,” Ph.D. dissertation,
L’Université de Rennes I, Oct 1992.

[22] ——, “Reduction operators in alpha,” in Parallel Algorithms and Archi-
tectures, Europe, ser. LNCS, D. Etiemble and J.-C. Syre, Eds. Springer
Verlag, June 1992, pp. 397–411, see also, Le Verge Thesis (in French).

[23] d. F. and S. Robert, “Hierarchical static analysis of structured systems of
affine recurrence equations,” in International Conference on Application
Specific Systems Architectures and Processors (ASAP 96), J. Fortes,
C. Mongenet, K. Parhi, and V. Taylor, Eds. IEEE, August 1996, pp.
381–390.

[24] F. Dupont de Dincehcin, “Systèmes structurés d’équations récurrentes :
mise en œuvre dans le langage Alpha et applications,” Ph.D. dissertation,
Université de Rennes, janvier 1997.

[25] F. Dupont de Dinechin, P. Quinton, and T. Risset, “Structuration of the
alpha language,” in Massively Parallel Programming Models, W. Giloi,
S. Jahnichen, and B. Shriver, Eds. IEEE Conmputer Society Press,
1995, pp. 18–24.

[26] A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, and T. Risset,
“Hardware design methodology with the Alpha language,” in Forum on
Design Languages, Sept 2001.

237

