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Abstract

Molecular Dynamic is a popular techniqueto simu-
late the behavior of physical systemswith resolutionat
the atomic scale One of its limitations is that an enor
mouscomputationakfort is requiredto simulateto realis-
tic time spans.Corventionalparallelizationstrategieshave
limited effectivenessn dealing with this dif culty. We re-
centlyintroduceda more scalableapptoach to paralleliza-
tion, whele data from prior, related, simulationsare used
to parallelize a simulation in the time domain. We demon-
stratedits effectivenesé nano-mebanicssimulations.In
this paper we developour approad sothatit canbe used
in a soft-matterapplicationinvolving the atomicforce mi-
croscopysimulationof proteins.\We obtainan order of mag-
nitudeimprovemenin performancevhenwe combinetime
parallelization with corventionalparallelization. The sig-
ni cance of this work lies in demonstating the promiseof
data-driventime parallelizationin soft-mattetapplications,
which are more challengingthan the hard-matterapplica-
tionsconsideedearlier.

1. Intr oduction

Molecular Dynamics (MD) nds widespreaduse in
atomisticsimulationsin Chemistry Materials,andBiology.
For example,MD providesan excellentmethodto identify
individual confamationalstatef proteins,andtransitions
betweendifferentconformationaktates.In MD, forceson
atomsdueto interactionswith othe atomsare computed
using certainempirical force elds. Onceforcesarecom-
puted, Newton's laws of motion are used,almostalways
with an explicit time integrationschemeto determinethe
trajectoryof the sygem. The objectivesof MD simulations
aretwo-fold: (i) to determinea statisticallyrepresentatie

1-4244-0910-1/07/$20.0@ 2007IEEE.

Tallahassed-L 32306USA

hnymeyer@fsu.edu

setof conformationalstates,and (ii) to reproducethe dy-
namicaltransitionshetwee thesestates.

A limitationof MD is theshorttime span thatcanbesim-
ulated. Large-scaleprotein conformationalchangessuch
asfolding and allosterictransitions,typically occurin the
millisecondtime scale.MD, on the otherhand,canaccess
time scalesof the orderof only a microsecondfor the fol-
lowing reason.High frequeng motionsof atomslimit the
time stepsize of the numericaldifferentialequationsolver
to aboutafemtosecond10 *°s). Consequentlyl0'? time-
stepsarerequiredto simuateto a millisecondof realtime.
This requres an enormouscomputationaleffort, asillus-
tratedlater. In fact, this limitation in the time scaleacces-
sible throughMD hasbeenidenti ed asone of important
challengesn computatimal biology [8] andcomputational
nano-material§l1].

Massve parallelismcanhelp dealwith the high compu-
tationaleffort to a certainextent. Thedif culty isin obtain-
ing high ef ciencies with currentparallelzation strataies,
becausehey are more effective in dealirg with large state
space,thanwith long time scales. For example, conven-
tional spatialdecompogion methods(including atomand
forcedecompositionsyield high ef ciencies only whenthe
time per iteration is of the order of ten milliseconds,as
shavn in g. 1, onthe mostscalablecodes. Thesedo not
scaleto betterthanthe orderof a millisecondper iteration,
evenif weacceptow ef ciencies. At granuhbritiesof 1 10
millisecondsperiteraion, it will take30 300yearsto sim-
ulateto a millisecondof real time, using a femto-second
time step. This problemis magni ed on codesthatareless
scalable.

Typical proteinsimulationshave on the orderof 30; 000
particles with explicit solvent (that is, when the water
moleculesareexplicitly represented)Furthermore signif-
icant developmenthasgone into implicit solvent methods
whichreplacetheexplicit watermoleculeswith aneffective
force eld, therebyreducingthenumberof particlesin most
proteinsto afew thousandatoms.Consequentlyspatialde-
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Figure 1. Scalingresultson an IBM Blue Gene/L.
The solid and dashedines showresultsfor NAMD,
based on data from [7]. The solid line is for
a 327,000 atom ATPase PME simuldion, and the
dashedline for the 92, 000 atom ApoA1PME simu-
lation. Thedash-ddted line showsresultsfor IBM's
Blue Matter codeon a 43; 000 atom Rhodopsirsys-
tem,basedon datafrom[4].

compositionis of limited usefor theseproblems,because
the statespaces evensmaler, leadingto ne granularities
onsmallernumbersof procesors.

Our approachis basedon the obsenation that simula-
tions typically occurin a contet rich in datafrom other
relatedsimulations.We usesuchdatato parallelizea sim-
ulation in the time doman. This leadsto a more lateng
tolerantalgorithmthanwith corventional parallelization.In
prior work, we parallelizedanimportantnaro-materialsap-
plication to over two ordersof magnitudelarger numbers
of processorghan feasiblewith corventional paralleliza-
tion. Thesoft-mattercomputationgypically encountereéh
computationabiology are morechallengingthanthe hard-
mattersimulationamentionedabove. In fact,it wasbelieved
thatthis approachwould not be feasiblein such computa-
tions. However, in this pajer, we demonstratéhefeasibility
of this approachon animportantsoft matterapplicationin
computationabiology.

The basicideabehindour approactis to have eachpro-
cessorsimulatea differenttime intenal, asillustratedin

g. 2. Thedif culty is that, in aninitial value problem,
a processoidoesnot know the initial statefor its time in-
terval until the previous processohasdeterminedts nal
state. We deal with this as follows. We useMD simula-
tionsto detemine a relationshipbetweenprior resultsand
the currentsimulation. We thenuseprior resultsto predict
theinitial statefor eachtime interval. Thuswe useall the
available knowledgeaboutthe physical systems behavior,

includingthe curentMD computationto predictthe start-
ing statefor eachprocessarTheMD computationsrethen
used,again, to verify if thepredictionswerecorrect,and to

learn the relationshipwith prior simuldions dynamically
from differencesobsened. This processcontinues. Each
of thesesteps (predictionandveri cation) is performedin

parallel. Somecommunications inevitable; however, this
overheadis smallin practice,asshavn later Theload is

alsowell balancedThis methodcanbe combnedwith spa-
tial decompositiorto increasethe scalability over existing

methods.In fact, our resultsdemamstratean improvement
by anorderof magnitudethrough suchanapproach.
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Figure 2. Shematicof time parallelization.

Theoutline of therestof this paperis asfollows. In x 2,
we presentackgroundnformationon MD andon Atomic
Force Microscopy(AFM) simulationsin biology. We then
explain our data-driren time paralelization approachand
the uniquechallengef applyingit to soft-matterapplica-
tions, in x 3. We presat experimentalreaults in x 4. We
summarizeour conclusionsn x 5.

2. Application
2.1. Molecul ar Dyn amics

MD is a computationalsimulation methodthat deter
minesthe position and velocity of eachatomthatis con-
tainedin a computationhcell subjectedo externalbound-
ary conditions(force, pressuretemperatureor velocities).
At ary point in time, an empirical force eld is usedto
computethe forceson all atoms. Then Newton's laws of
motionareusedto determinethepositiors andvelocitiesof
all atomsatthenext pointin time, usinganexplicit numer
ical differential equationsolver. This processs repeated.
Thetime stepsizeis requiredto be arourd a femto second
(10 5s) to ensurestability. Realisticsimulatiors needto



be performal to microsecond®r millisecondstime spans.
Thus10® 10 iterationsarerequired which needsenor
mous computationseffort, even if the physical systemis
small.

FurthermoreasingleMD trajecbry doesnotgive useful
informationin soft-mattercomputations.Ratter, we com-
putea numberof trajectories,and perform somestatistical
averagingof quantitiesof interest. This will be explained
furtherin section3.3.

2.2. Atomi c Force Micros copy on Titi n

The biological sygemwe consideris Titin. It is a giant
multi-domain muscleprotein forming a major component
of vertebratemuscle. The propertiesof Titin are studied
by characterizatiorof its individual domains. Each Titin
domainis identical. Thereforejts properties suchasmus-
cle elasticity canbe determinedby studyingthe properties
of eachindividual domainusing protein-unfoldingexperi-
ments.

In Atomic Force Microscopy of Titin, mechanial force
is appliedto its two ends. This force produceschanges
(suchasunfolding) thataredescribedvy a force-extension
pro le —how muchforceis appliedversustherelative sep-
aration of the points at which force is applied, as shovn
laterin g. 8. AFM is becominganimportantbiophysical
techniqueto studyproteinunfolding eventsat atomicreso-
lution.

AFM measurementare limited in their pulling speed,
and the use of a nite pulling speeddirectly affects the
mechanisnof folding [12]. Unfortunately traditionalMD
simulationsarelimited to ratesof pulling thatareseveralor-
dersof magnitudefasterthan possibleexperimentallydue
to the lack of computationalpower. Current simulations
are limited to reproduciny pulling ratesin the rangeof 1-
10 m/s,comparedvith typical experimentalkatesof 10 "—
10 5 m/s.Ouraimis to usesuchhigh pulling rateresultsto
time-parallelizdower pulling rateexperiments.We usel0
m/srunsto time-parallelizel m/scomputationsSimulating
atevenlower speedsequiresmorecomputationatesources
thanwe have available.

3. Data-Driven Time Parallelization

In thissectionwe rstdescribehedata-drventime par
allelizationapproach Mary stratgiescanbeimplemented
within theframework of this apprach.We describeheap-
proachusedn ourealier hard-natterappications.Wethen
describehechallenge®f soft-matterapplications andthen
presenthespeci c stratgy usedin the AFM application.

3.1. The Appr oach

Figure2 illustratesour approach.Let uscall afew itera-
tions,say1; 0000r 10; 000time stepsof adifferentialequa-
tion solver, asatimeinterval. We divide the total number
of time stepsneedednto a numberof time intervals. Ide-
ally, the numberof intervals shouldbe much greaterthan
thenumberof processorsLett; ; denotethebeginningof
thei thinterval. Eachprocessor 2 f1  Pg, soméwow
(to be describedater) predictsthe statesattimest; ; and
t; in parallel (exceptfor the known stateatty), usingdata
from prior simulations.lt thenperformsaccurateMD com-
putations,startingfrom the predictedstateat timet; ; up
to time t;, to verify if the predictionfor t; is closeto the
computedresult. Both predictionandveri cation aredone
in parallel. If the predidedresultis closeto the computed
one,thentheinitial statefor processor + 1 wasaccurate,
andsothe computedesultfor processor + 1 toois accu-
rate,providedthepredictedstatefor timet; ; wasaccurate.
Notethatprocessr 1 alwaysstartsfrom a stateknown to be
accurate,and so the algorithm always progressesat least
onetime interval, sincethe MD computation®n processor
1 leadto accurateresultson that processar In g. 2, the
predictedstatefor t3 wasinaccurateandwe saythat pro-
cesso3 erred Computationgor subsequenpointsin time
toohaveto bediscardedsincethey mighthave startad from
incorrectstart states. The next phasestars from time ts,
with theinitial statebeingthe statecomputedby processor
3 usingMD attime t3, andwe computestatesfor timest,,
ts, tg, andty in parallel.

Notethefollowing: (i) Processot's MD resultis always
correct,sinceit alwaysstartsfrom a stae known to be ac-
curate.Sothe computatioralwaysprogresses(ii) All pro-
cessorsnustusea consistenpredictionmechansm,sothat
the predictionsfor timet; areidenticalon processors and
i + 1. (iii) A globalcommunicatioroperation(AllReduce
call in Algorithm 1) is usedto detectthe smallestranked
processoto err. (iv) Theinitial statefor processofl needs
to besentby anotheprocessarexceptduringthe rst phase
of thecomputation (v) If atime interval consistsf alarge
numberof time stepsthenthe communicatiorand predic-
tion overheadsare relatively negligible, leadingto a very
lateny tolerantalgorithm.

3.2. Prior Work

Our prior work wason thetensle testof a CarbonNan-
otube (CNT), wherea CNT is pulled at one end, keeping
the otherend x ed. Corventionalparallelizationof the ap-
plicationwe consideredscalego only 2 3 processorgat
agranularityunder10 msperiteration). Our computations
scaledo two to threeordersof magnitudegreatemumberof
processorswith ef ciencies typically over 90% Onesim-



Figure 3. AFM pulling of TI 127mutant.Let: Initial state Cener: Statebefore a strandbreaksapart. Right: State

after a strand breaksapart.

ulationyieldeda granularityof 13:5 s periteration,which
we believeis the nest granularityachiezedin classicaMD
computationsPredictiorwasbasedn rst redwingthedi-
mensionalitypby nding alow-dimensionakubspacevhere
changedapperslowly, making themeasierto predict.

3.3. Chall enges in Soft-Matter A pplicat ions

Soft-matter applications, as typically encounteredin
computationabiology, aremoredif culttotime-parallelize
thanthe hard-matterapplicatiors describedabove, for the
following reasons.In hard-matteisimulations,MD trajec-
toriesstartedunderslightly differentinitial conditions(such
as differert velocities) or using different randomnumber
sequencedpllow trajectoriesthat are closeto eachother
at leastfor sutstantiallylong periodsof time. In contrast,
soft-mattersimulationsexhibit diffusive heterogeneoube-
havior. The trajectoriesare extremely sensitve to initial
conditions. Two differentsimulationswith slightly differ-
entinitial conditionswill divergeexponentiallyastime pro-
gressesSimilar divergenceis causedy numericalerrorsin
thedifferentialequationsolver. In fact,a singleMD trajec-
tory doesnot give much usefulinformationin soft-matter
simulations. Instead,one requiresstatisticsfrom a large
numberof simulations.

3.4. Specic
Problem

Appr oach in the Biol ogical

In this section,we presentour implementationof the
data-drven time-parallelizatiorapproachfor AFM pulling
of proteins(Algorithm 1). The primary differencefrom the
CNT applicationis in prediction.Simpledimensionalityre-
ductiontechniquesre not effective for this application.In-
steadwe usethe actualdatafrom previous simulations.As
the simulationproceedsye determinethe prior simulation
which the currentsimulationis behaing like, andusethat
prior simulationto predicttheinitial states.

During the veri cation phase we have to choosesome
criteriato detamineanacceptablerrorthreshold. We have
resultsof fasterpulling runs,with differentseedgo theran-
domnumbergeneratousedin thethermostatandalsodif-
ferentinitial stateq(initial velocitiesof theatoms).We note
the differencesbetweensimulationswith differentrandom
numberseeds. We seterror thresholdsfor the difference
betweenpredictedstateand computedstatebasedon the
above difference. Thatis, a predictionis considereduf-
ciently accuratdf its differencewith the computedstateis
similar to thedifferenceobsenedif we haduseda different
randomnumbersequence.

We usetwo metricsfor the differencesOneis the max-
imum differencein positionshetweerthe sameatomin the
two statesde nedby M AX D = mayx; d;, whered; is the
differencein positionsof thei th atomin the two states.
The otheris the roo& meansquaredeviation, which is de-

ned asRMSD =+ L d?, whereN is thenumber
of ators. In computingthesedifferencespnly theatomsin
Titin were consideredandnot the solventatoms. Further
more,beforethestatesverecomparedthey werealignedto
remove the effectsof rigid body motion(rotationandtrans-
lation), asis corventionallydonewith RMSD calculations.

Figure 4 shaws the variation of RMSD and maximum
differencewith time, for two fasterpulling runsusing dif-
ferent seeds. Basd on such results, we setthe RMSD
thresholdto 0:2 nm andthe maximum differencethreshold
to 1 nmin step9 of algorithm1.

3.5. Com bini ng Space and Time Paralleliza-
tion

Time andspaceparallelizationcanbe combined sothat
time parallelizations usedto improve scalabilityover what
is possible throughjust spatialparallelization.Insteadof a
singleprocessocomputingfor onetime interval, a group of
processos computedor atime intenal. We hadmentionel
the potentialfor suchcombinationin earlierwork. In the
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Figure 4. Differencebetweentwo trajectoriesthat

are identical, exceptthat they usedifferent seedsto
therandomnumbergeneator usedin thethermostat.

currentwork, we actuallyimplementedhisfeature.Thisre-
quiredsomechange$o the GROMACS3.3.1[5] Molecular
Dynamicscode,which we usedin our simulations.In par
ticular, the codewasnot designedo be composedwvith it-
selfor with othercode.Wemodi ed it sothatit canbecom-
posedwith itself. We alsoneedsomeadditionaltools pro-
videdby GROMACS, to remove solventatoms,align Titin
statesthroughrigid body motion, and computeRMSD. It
wasdif cult to composehesewith the mainprogram,and
so we insteadusedthe systemcall to call theseprograms
(which arerun sequentiallyandindependentlyon onepro-
cessoinof eachgroup) They interactwith themainprogram
through le 1/0. While this is much slower thanwould be
possiblef they hadbeenintegratedwith themainprogram,
the overheadassociateavith this is relatively insigni cant,
becausesachtime interval of 10; 000 time stepsrequires
several hoursof computingtime, even whenspatially par
allelized, becauseGROMACS doesnot scalewell to very
ne granularities.

Algorithm 1 Time Parallelize (Initial StateSy, Numberof
processor® , Numberof time intervalsm)

1t 0

2: while t < mdo

3. foreachprocessori 2 [1;min(P;m t)]do

4: if i 6 1then

5: Si+i 1 Predict(t+i 1)

6: endif

7: Si+i Predict(t + i)

8: St AccurateM D (StartState =
Si+i 1;StartTime = t+ i 1,EndTime =
t+1i)

9: if RMSD or MAX D too large(Ssi;Si+i)
then

10: Next i

11: else

12: N ext P

13: endif

14: endfor

15:  k  AllReduce(N ext; min)

16:  St+k onprocessofl S computedby processor

K.

17:  for each processar i 2 [1;P]do

18: t t+Kk

19: endfor

20: endwhile

4. Experimental Results

The aim of our experimentsis to evaluatethe potential
of data-drventime paralldization in soft-mattertMD simu-
lations,in termsof scalablity andaccurag.

Our primary computing platform is a 32-node dual-
processoibut not dual-core)Opteronclusterwith Gigabit
EthernetinterconnectTheprocessorsun at2:0 GHz, have
2 GB ECC DDR SDRAM memory per node, 64 KB L1
cache,1024KB L2 cache,andrun Red Hat Linux kernel
2:6:9. The MPI implementationused was LAM, andgcc
wasusedfor compilation.

Combinedspace-timepardlelism was evaluatedon the
TungstenXeon clusterat NCSA. This cluster consistsof
Dell PonverEdge 1750 seners, with each node contain-
ing two Intel Xeon 3.2 GHz processors3 GB ECC DDR
SDRAM memory 512KB L2 cache,1 MB L3 cachefun-
ningRedHatLinux. The le systenuseds Lustre.Myrinet
2000andGigabit Ethenetinterconnetswereavailable.We
usedthe Myrinet interconnect. The ChaMPlon/ProMPI
implementationwvas usedwith the gcc compiler and code
compiledwith '-O3' optimization ag set.

The simulationsetupwasasdescribedbelon. We used
the GROMACS software to performthe MD simulations.
The input was a protein native structureT| 127 (a 1TIT



Titin mutantwith A-stranddeleted)from the ProteinData
Bank [9]. A total of 9;525 TIP4 water moleculeswere
addedas solvent. Na* and Cl ions were addedto
maintain chaige neutrality The total number of atoms
was around40K. The simulationswere performedunder
NVT conditions,with temperature&keptat 400 K usinga
Langevin thermostatSpringswereattachedo the rst and
lastCarbonatomsunderaforce constanbf 400kJ =(mol
nm?).

4.1. Speedup

Figure5 shavsthatspatiad parallelizationdoesnot scale
beyondasmall numberof processorsTheresultsshav that
thetime parallelcodecan scalewell to 16 processorsThe
predictionis usualy sufciently accurate with minor er-
rors, yielding ef ciencies around90%or higheronupto 10
processorsWith 12 and16 processorghereis a setof pre-
diction errorsbeforeandafter peakson theforce extension
curve, whichlowerstheefci eng/ tothe75% 80%range.
Thelossin ef ciency is primarily dueto predictionerrors.
The parallelizationoverheadsare themsévesrelatively in-
signi cant, becausehetime takenfor eachtime interval is
around5 hours,while the overheadsrein seconds.

Figure6 comparespatialparallelizationwith combined
time andspatialparallelization. The overheadf thetime
parallelizationassociatedavith prediction,veri cation, and
I/0 areinsigni cant, accountingor around0:1% of theto-
tal time. Someof thelossin efciency is dueto prediction
errors,asshovn in Figure5 (solid line). However, themain
lossin ef ciency is dueto the spatiallyparallelizedcodeit-
self having pooref ciency of 46:5% on 8 processorsn the
Xeoncluster

A sequentiatun requiresaround5000hoursto simulate
totennanosecond@ve needto simulateto aroundd nsto be
surethattheoneof thepeak=f theforce-displacemertdode
is obsened). This would take closeto a yearof sequential
computingtime. In orderto obtainspeedupesultsfasteron
the spatiallyparallelizedcode,we simulatedfor a nanosec-
ondto getthespeedupesults.We alsoperformedcomplete
spatially paralel runson 16 processorgach which took
a little lessthana month of computingtime per run. For
thetime parallelruns,afew completerunswere performed
on 10 processors.Predictionerrorstypically occur closer
to wherethe force-displacementurves peak,as expected.
In orderto deteminethe speeduprunswerestaredalittle
beforethe peak,andthensimulatedfor 2 ns. This malkesit
feasibleto computethe speedumn small numbersof pro-
cessorgoo. However, the speedupver the whole run will
likely be larger, becausg¢henwe would includethe initial
region wherepredictionerrorsdo not occut The speedup

T P4 is awatermoleculemodelwhich has2 Hydrogenatomsand?2
Oxygenatoms.

Figure 5. Speedupesults. Time parallelization on
the Opteon cluster (solid line), spatial paralleliza-
tion onthe Opteon cluster(dashedine),and spatial
parallelizationonthe Xeon cluster(dash-dottedine).

for the combinedspace-itne parallel code was computed
asfollows. From the purely time-parallelresultdescribed
above, thenumberof iterationsrequiredfor theloopin step
2 of algorithm 1 wascomputedfor eachvalueof the num-
ber of processorsP. The combinedparallelcodeusedP
groupsof processorswhereeachgroup performeda spa-
tially parallel computaibn on 8 processors. The simula
tion results(but not the timing results)are the sameas a
time parallel computationon P processorshut performed
faster We performedshorterrunsto determinethe time
takenfor onetimeinterval of the combinedime-spacear
allel code,andmultiplied it by the numberof iterationsob-
tainedthrough pure time parallelization,to determinethe
total time. As mentionedabove, sincethe puretime paral-
lelizationresultsunderestimat the speedupover thewhole
run, the combinedresults too probably underestnate the
speedumver theentirerun.

4.2. Validation

We next needto validatethe correctnessf thetime par
allelizedruns. Thisis moredif cult than for thehardmatter
computation pecause singleMD trajectoryis not mean-
ingful. Instead,we areinterestedn the statisticalaverage
of a numberof trajectories We usethe peakforce, for the

rst peak,to validatethetime-parallelresults.

There are differenttheoriesto explain the variation of
peakforce with pulling speed suchasthe following. The
ruptureforce is predictedto grow proportionallywith the
logarithm of the pulling speedin [3]. Hummerand Sz-
abo [6] predictthat it will be proportionalto (In v)lzz,
wherev is the pulling speed. Dudko et al. [2] predictit



Figure 6. Speedupesults.Combinedime andspa-
tial parallelization on the Xeon cluster with ead
group being 8-way spatially parallelized (solid line)
andspatial parallelization onthe Xeoncluster(dash-
dottedline).

to be proportionalto (In v)2:3. Peakruptureforcesunder
differentpulling ratesyield two importantconstaniproper
ties of the protein: (i) the unfolding rate constantand (ii)
the distancefrom folded stateto transitionstate. Thesetwo
propertiesprovide a simpli ed interpretationof a particu-
lar protein's enegy landscapeand allows oneto compare
mechanicabtrengthof differentproteins.

We canvalidatethe corrednessof thetime parallelruns
by verifying thatthe outputruptureforceshave a rangeof
valuesconsistentwith the spatially parallelizedruns, and
that they occurat correctpointsin time. Figure 7 shavs
thattheruptureforcesfrom our time parallelizedcodehave
a similar rangeasthe spatially parallelizd code,and that
their averagedoo areclose.

We alsowishedto validatethe MD simulations,to see
if their resultsareconsistentvith experimentseventhough
it is not directly relatedto time parallelization. It is dif -
cult to do this directly, sincethe pulling speedsn the two
casedliffer by severalordersof magnitude Insteadwe ex-
trapolateexperimentalresults,and seethatthe MD results
arein the rangepredictedby a logarithmic variation with
pulling speed.While the exactvaluesappeara little abore
theextrapolationline, they arein anacceptableange.

We next shav resuts that denonstratethat the time-
parallel code shaws transitionsat similar pointsin time
asthe spatially parallelizedcode. Figure 8 compareshe
forceextensionpro les obtainedfrom the GROMACS spa-
tially parallelizdcodeandourtime parallelizedcode.Both
codesshow transitions(inferred from the peaks)at similar
pointsin time. Figure9 shavs thatthe RMSD differences
betweeratime-pardlel runandtheexacttrajectoryare sim-

Figure 7. Squaesare rupture forcesobtainedfrom
experiments[1]. Triangles are rupture forces ob-
tained from spatially parallelized runs. Diamonds
are reallts of the time parallelized code (four data
pointsat the slowestMD pulling speed).Circlesare
the meansfrom spatially parallelizedruns. The®ve-
pointedstart, almostcoincidingwith a circle andtwo
diamondsjs the meanfor thetime-parallel run. The
dashedine showsthelinear leastsquake best®t line
of theexperimentaldata.

ilar to thedifferencebtainedusingdifferentrandomnum-
bersequences.

We now give possiblereasonsto explain the accurate
statisticsobseredthroughtime-paralelization,despie dif-
ferencesbetweenpredictedand computedstates. Any nu-
merical integration schemefor MD will not yield an ex-
act trajectory becausesmall numericalerrors will cause
the simulatedtrajectoryto diverge from the true one, as
mentionedin x 3.3. Instead,we want the statisticalprop-
ertiesfor a collectionof computedtrajectoriesto be close
to those of the exact trajectories. This is typically at-
temptedusing symplecticintegrators (which are volume
preservingin phasespace). Suchmethodsyield solutions
that are close to the exact solution of an approximation
to the force eld used,over a time interval whose length
is O(1=time step size) [10]. Note that being symplectic
is a property of the time-integrator; if the time-integgrator
is symplectic,thenthis propertyis presered in the time-
parallelscheme.

The numerical integration schemeis also usually re-
quired to be time-reversible. A volume preservingand
time-reversibleintegrator ensuregdetailedbalance. Time-
reversibility is not presered in the time-parallelscheme.
We now explain why this doesnot appearto affect our re-
sults. Thesetof conformation®f theproteincanberoughly



Figure 8. Plot of force versustime (or equivaéntly,
extension). The solid lines are forcesfor three spa-
tially parallelized runs, and the dashedlines are
forcesfor threetime parallelizedruns.

partitionedinto a numberof basins.Major transtions hap-
penwhenthe proteinmovesfrom onebasinto anothey but
mostof thetime is spentin asinglebasin.Theerrorthresh-
oldsensurehatthe predictedandcomputedstatesarecon-
sideredequialentonly if they arecloseto eachotherin the
samebasin.Thetime-scalesnvolvedin goingfrom thepre-
dictedstateto the computedstate(whenthedifferencesare
belov the thresholdswould be very short comparedwith
thelengthof atimeinterval (whichis 10 ps). This, perhaps,
causesheresultsto beacarate.

5. Conclusions

We have shaved the promise of data-drventime paral-
lelizationin a practicalbiological soft-matterapplication—
AFM simulationof proteins.Whencombinedwith corven-
tional parallelization|t extendsthelatter's scalabilityby an
orderof magnitude.
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