
Kcollections
M. Stanley Fujimoto
Cole A. Lyman
Mark J. Clement
Brigham Young University

HICOMB2020



Why
● Many bioinformatic algorithms are based on k-mers
● Prototyping new algorithms based on new algorithms can be difficult because:

○ The number of possible k-mers grows exponentially as k increases
○ Storing k-mers for even moderately sized k becomes impossible on desktop hardware

We propose an efficient and fast method for storing k-mers, kcollections, for broad 
bioinformatic applications

HICOMB2020



How
● Take advantage of common k-mer serialization techniques to:

○ Store k-mers in an efficient data structure (burst trie)
○ Parallelize insert and look-up operations

HICOMB2020



How - Serialization
K-mers are commonly bit-packed using only 2 bits per base for efficient storage. 
We exploit the compact, serialized k-mers for further storage and speed efficiency.

HICOMB2020



How - Efficient Storage, Trie
Shared prefixes amongst k-mers are redundant. Remove redundant information 
by storking k-mers in a trie.

ATAA
ATAC
ATAT
ATCA
ATCG
ATGG

AT

A

C

A

A

C

T

GG
G

HICOMB2020



How - Efficient Storage, Burst Trie
Use a burst trie to manage/minimize the creation of new children vertices. Children 
vertices are stored in a condensed array.

ATAA
ATAC
ATAT
ATCA
ATCG
ATGG

AT

A

C

A

A

C

T

GG
G

Children Vertex Array



How - Parallelization, Map
Multi-threaded insert is done by mapping incoming k-mers to appropriate threads 
which are responsible for a partition of the trie. Bit shifting quickly identifies the 
appropriate partition/thread a k-mer should be sent to.



How - Parallelization, Reduce
Merging partitions is simple: use bitwise operation to merge housekeeping 
variables and concatenate children vertices from each partition.



How - Parallelization, Look-Ups
Look-ups are thread-safe.

HICOMB2020



How - Parallelization, Look-Ups
1. Serialize k-mer query: AAGA -> 00100000

Presence Array

Children Vertex Array



How - Parallelization, Look-Ups
1. Serialize k-mer query: AAGA -> 00100000
2. Convert serialized k-mer to int: 00100000 -> 32

Presence Array

Children Vertex Array



How - Parallelization, Look-Ups
1. Serialize k-mer query: AAGA -> 00100000
2. Convert serialized k-mer to int: 00100000 -> 32
3. Check presence array if pos 32 bit is set Presence Array

Children Vertex Array



How - Parallelization, Look-Ups
1. Serialize k-mer query: AAGA -> 00100000
2. Convert serialized k-mer to int: 00100000 -> 32
3. Check presence array if pos 32 bit is set
4. Bitshift array

Presence Array

Children Vertex Array



How - Parallelization, Look-Ups
1. Serialize k-mer query: AAGA -> 00100000
2. Convert serialized k-mer to int: 00100000 -> 32
3. Check presence array if pos 32 bit is set
4. Bitshift array
5. Popcount of array: 9

Presence Array

Children Vertex Array



How - Parallelization, Look-Ups
1. Serialize k-mer query: AAGA -> 00100000
2. Convert serialized k-mer to int: 00100000 -> 32
3. Check presence array if pos 32 bit is set
4. Bitshift array
5. Popcount of array: 9
6. Retrieve item at index 9 in children vertex array

Presence Array

Children Vertex Array



What - Performance Comparison

HICOMB2020



What - Performance Comparison

HICOMB2020



Acknowledgements
● Dr. Mark J. Clement
● Cole A. Lyman
● BYU Computational Sciences Laboratory

HICOMB2020


